
Learning Where To Look –
Generative NAS is Surprisingly Efficient

Jovita Lukasik1* Steffen Jung2* Margret Keuper2,3

1 University of Mannheim 2 Max Planck Institute for Informatics, Saarland Informatics Campus
3University of Siegen

Abstract

The efficient, automated search for well-performing neu-
ral architectures (NAS) has drawn increasing attention in
the recent past. Thereby, the predominant research ob-
jective is to reduce the necessity of costly evaluations of
neural architectures while efficiently exploring large search
spaces. To this aim, surrogate models embed architectures
in a latent space and predict their performance, while gen-
erative models for neural architectures enable optimization-
based search within the latent space the generator draws
from. Both, surrogate and generative models, have the aim
of facilitating query-efficient search in a well-structured la-
tent space. In this paper, we further improve the trade-off
between query-efficiency and promising architecture gener-
ation by leveraging advantages from both, efficient surro-
gate models and generative design. To this end, we pro-
pose a generative model, paired with a surrogate predic-
tor, that iteratively learns to generate samples from increas-
ingly promising latent subspaces. This approach leads to
effective and efficient architecture search, while keeping the
query amount low.

1. Introduction
The first image classification network [13] applied to

the large scale visual recognition challenge ImageNet [4]
achieved unprecedented results. Since then, the main driver
of improvement on this challenge are new architecture de-
signs [7, 22] that, ultimately, lead to architectures surpass-
ing human performance [6]. Since manual architecture de-
sign requires good intuition and a huge amount of trial-and-
error, the automated approach of neural architecture search
(NAS) receives growing interest [5,11,14,19,27,29]. Well-
performing architectures can be found by applying common
search practices like random search [1], evolutionary search
[18, 19], Bayesian optimization (BO) [9, 20, 24], or local
search [25] on discrete architecture search spaces, such as

*Authors contributed equally.

NAS-Bench-101 and NAS-Bench-201 [5, 27]. However,
these methods are inefficient because they require to eval-
uate thousands of architectures, resulting in impracticable
search times. Recent approaches avoid this problem of im-
mense computation costs by either training surrogate mod-
els to approximate the performance of an architecture [2,16]
or by generating architectures based on learned architecture
representation spaces [17, 28].

This trade-off between query efficiency and resulting
high-scoring architectures is an active research field. Yet,
no attempts were made so far to leverage the advantages of
both search paradigms. Therefore, we propose a model that
incorporates the focus of promising architectures already in
the architecture generation process by optimizing the latent
space directly: We let the generator learn in which areas
of the data distribution to look for promising architectures.
This way, we reduce the query amount even further, result-
ing in a query-efficient and effective NAS method. Our
proposed method is inspired by a latent space optimization
(LSO) technique [23], originally used in the context of vari-
ational autoencoders [10] to optimize generated images or
arithmetic expression using BO. We adapt this concept to
NAS and pair it with an architecture performance predic-
tor in an end-to-end learning setting, so that it allows us
to iteratively reshape the architecture representation space.
Thereby, we promote desired properties of generated archi-
tectures in a highly query-efficient way, i.e. by learning ex-
pert generators for promising architectures. Since we cou-
ple the generation process with a surrogate model to predict
desired properties, there is no need for BO in the generated
latent space, making our method even more efficient.

By extensive experiments on common NAS benchmarks
[5,14,27] we show that our method is effective and sample-
efficient. It reinforces the generator network to produce ar-
chitectures with improving validation accuracy, as well as in
improving on hardware-dependent latency constraints (see
Figure 2) while keeping the number of architecture evalua-
tions small.

2. Architecture Generative Model

Preliminaries We aim to generate neural networks repre-
sented as directed acyclic graphs (DAG). This representa-
tion is in line with the cell-based architecture search spaces
commonly used as tabular benchmarks [5,27].

Each cell is a DAGG = (V; E), with nodesv 2 V and
edgese 2 E. The graph representations differ between the
various benchmarks in terms of their labeling of operations.
Generative Network Our proposed network is apurely
generativenetwork,pG , which does not rely on any archi-
tecture evaluation and is therefore fast and query free. To
generate valid graphs, we build our model similar to the
graph decoder from the VAE approach SVGe [17]. The
generator takes a randomly sampled variablez � N (0; 1)
as input and reconstructs a randomly sampled graph from
the cell-based search space in an iterative manner. Further-
more, we adapt the generator to allow for backpropagation.
Thereby, the generator can ef�ciently learn which part of the
architecture search space is promising with only few eval-
uated architectures. Note that the end-to-end trainability of
the proposed generator is a prerequisite for our model: It al-
lows to pair the generator with a learnable performance pre-
dictor such that information on the expected architectures'
accuracy can be learned by the generator. This enables a
stronger coupling with the predictor's target for the gener-
ation process and higher query ef�ciency. In contrast, pre-
vious models such as [8, 17, 26] are not fully differentiable
and do not allow such optimization.

Our generative model is pretrained on the task of re-
constructing neural architectures, where, for each randomly
drawn latent space sample, we evaluate the reconstruction
loss to a randomly drawn architecture.
Performance Predictor Our generative model is coupled
with a simple surrogate model, a 4-layer MLP with ReLU
non-linearities, for target predictionsC. These targets can
be validation or test accuracy of the generated graph, or the
latency with respect to a certain hardware.
Training Objectives The generative modelpG learns to
reconstruct a randomly sampled architectureG from search
spacepD given a randomly sampled latent vectorz �
N (0; 1). The objective function for this generation process
can be formulated as the sum of node-level lossL V and
edge-level lossL E :

L G (~G; G) = L V + L E ; ~G � pG (z); G � pD ; (1)

whereL V is the Cross-Entropy loss between the predicted
and the ground truth nodes andL E is the Binary-Cross En-
tropy loss between the predicted and ground truth edges of
the generated graph~G. This training step iscompletely un-
supervised. To include the training of the surrogate model,
the objective function is reformulated to:

L (~G; G) = (1 � �)L G (~G; G) + � L C (~G; G); (2)

where� is a hyperparameter to trade-off generator lossL G

and prediction lossL C for the prediction targetsC of graph
G. We set the predictor loss as an MSE. Furthermore, each
loss is optimized using mini-batch gradient descent.
Generative Latent Space Optimization (LSO) To facil-
itate the generation process, we optimize the architecture
representation space via weighted retraining [23], resulting
in a sample ef�cient search algorithm. The intuition of this
approach is to place more probability mass on high-scoring
latent points, (e.g. high performing or low latency archi-
tectures) than on low-scoring points. Note that this strat-
egy does not discard low-scoring architectures completely,
which would be inadequate for proper learning.

We assign a weightwi to each data pointGi � pD , indi-
cating its likelihood to occur during batch-wise training. In
addition, the training objective is weighted via a weighted
empirical mean

P
G i � pD

wi L for each data point. As for
the weights, [23] proposed a rank-based weight function

w(G; pD ; k) /
1

kN + rankf;p D (G)

rankf;p D (x) = jf Gi : f (Gi) > f (G); Gi � pD gj;
(3)

where f (�) is the evaluation function of the architecture
Gi ; for NAS-Bench-101 [27] and NAS-Bench-201 [5] it
is the tabular benchmark entry. Similar to [23], we set
k = 10e � 3. The retraining procedure itself then consists
of �netuning the pretrained generative model coupled with
the surrogate model, where loss functions and datapoints
are both weighted byw(G; pD ; k).

3. Experiments

We evaluate the proposed simple architecture genera-
tive network (AG-Net) on the two commonly used tabular
benchmarks NAS-Bench-101 [27] and NAS-Bench-201 [5]
and the �rst hardware device induced benchmark [14], for
which we consider the latency information on the NAS-
Bench-201 search space.

3.1. Experiments on Tabular Benchmarks

NAS-Bench-101 For our experiments on NAS-Bench-
101, we �rst pretrain our generator for generating valid
graphs on the NAS-Bench-101 search space. This step does
not require information about the performance of architec-
tures and is therefore inexpensive. The pretrained generator
is then used for all experiments on NAS-Bench-101. Our
NAS algorithm is initialized by randomly sampling16 ar-
chitectures from the search space, which are then weighted
by the weighting functionW = w(G)G� pD

. Then, latent
space optimized architecture search is performed by itera-
tively retraining the generator coupled with the MLP surro-
gate model for15 epochs and generating100architectures
of which the top16(according to their accuracy prediction)

Figure 1. Architecture search evaluations on NAS-Bench-101 and NAS-Bench-201 for different search methods.

Figure 2. (left) Exemplary searches on HW-NAS-Bench for im-
age classi�cation on ImageNet16 with192queries on Pixel 3 and
latency conditionsL 2 f 2; 4; 6; 8; 10g (y-axis zoomed for vis-
ibility). (right) Amount of architectures generated and selected
in each search iteration (at most16) that satisfy the latency con-
straint. In this example we searched on Edge GPU withL = 2 .

are evaluated and added to the training data. This step is re-
peated until the desired number of queries is reached. When
generating architectures, we sample from a grid, contain-
ing the99%-quantiles fromN (0; 1) uniformly distributed.
This way, we sample more distributed latent variables for
better latent space coverage. We compare our method to the
VAE-based search method Arch2vec [26], as well as state-
of-the-art methods, random search [15], local search [25],
Bayesian optimization [21], regularized evolution [18] and
BANANAS [24]. Note that we search for the architecture
with the best validation accuracy and report the correspond-
ing test accuracy. We plot the search progress in Figure 1
(left) of this comparison. Our model AG-Net improves over
all state-of-the-art methods, not only at the last query of300
data points, reaching a top-1 test accuracy of94:2%. It is
also almost any time better during the search process.

NAS-Bench-201 covers three image classi�cation tasks:
CIFAR-10, CIFAR-100 [12] and ImageNet16-120 [3]. For
NAS-Bench-201 [5] we retrain AG-Net in the weighted
manner for30 epochs. We plot the search progress over
queries in Figure 1 (right). Our method provides state-of-
the-art results on all datasets for varying number of queries.

3.2. Experiments on HardwareAware Benchmark

Next, we apply AG-Net to the Hardware-Aware NAS-
Benchmark [14]. We demonstrate in two settings that AG-
Net can be used for multi objective learning. The �rst set-
ting (Joint=1) is formulated as constrained joint optimiza-

tion:

max
G� pD

f (G) ^ min
G� pD ;

gh (G) s.t.gh (G) � L; 9 h 2 H;

(4)

wheref (�) evaluates architectureG for accuracy andgh (�)
evaluates for latency given a hardwareh 2 H and a user-
de�ned latency constraintL . The second setting (Joint=0)
is formulated as constraint objective:

max
G� pD

f (G) s.t.gh (G) � L; 9 h 2 H; (5)

where we drop the optimization on latency and only opti-
mize accuracy given the latency constraint. The loss func-
tion to train our generator in these settings is updated from
Equation 2 to:

L (~G; G) =(1 � �)L G (~G; G)+

�
�
� L C1 (~G; G) + (1 � �)L C2 (~G; G)

�
;

(6)

where� is a hyperparameter trading off generation and pre-
diction loss, and� is a hyperparameter trading off both pre-
diction targetsC1 (accuracy) andC2 (latency).

To perform LSO in the joint objective setting from Equa-
tion 4, we rank the training dataD for both accuracy and
latency jointly by summing both individual rankings. To
ful�ll the optimization constraint, we further penalize the
ranks via a multiplicative penalty if the latency does not ful-
�ll the constraint. This overall ranking is then used for the
weight calculation in Equation 3. The LSO for the con-
straint objective setting from Equation 5 only ranks archi-
tectures by accuracy and penalizes architectures with infea-
sible latency property. We choose random search as a base-
line in this setting as it is generally regarded as a strong
baseline in NAS [15]. Figure 2 depicts searches with our
model in both optimization settings on Pixel 3 with differ-
ent latency conditions. We observe that either optimization
setting outperforms the random search baseline given dif-
ferent latency constraints. Additionally, our method is able
to �nd the optimal architecture for a task regularly (in15out
of 20 tasks), which random search was not able to provide.

We can see,Joint=1 is able to �nd better-performing ar-
chitectures compared toJoint=0 if the constraint restricts
the space of feasible architectures strongly.

The feasibility ratio of random search is an indicator
on how restricted the space is. In most cases, the latency
penalization seems to be suf�cient to �nd enough well-
performing and feasible architectures, as can be seen by the
feasibility of Joint=0 which is greatly improved compared
to random search. We show the development of feasibility
over time in Figure 2.

4. Conclusion

We propose a simple architecture generative network
(AG-Net), which allows to directly generate architec-
tures without any additional encoder or discriminator.
AG-Net is fully differentiable allowing to couple it
with surrogate models for different target predictions.
In contrast to former works, it enables to backpropa-
gate the target information from the surrogate predictor
into the generator. By iteratively optimizing the latent
space of the generator, our model learns to focus on
promising regions of the architecture space, so that it can
generate high-scoring architectures directly in a query
and sample-ef�cient manner. Extensive experiments on
common NAS benchmarks demonstrate that our model
outperforms state-of-the-art methods at almost any time
during architecture search. It also allows for multi objec-
tive optimization on the Hardware-Aware NAS-Benchmark.

References

[1] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization.Journal of Machine Learn-
ing Research, 13(10):281–305, 2012. 1

[2] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct neural
architecture search on target task and hardware. InICLR,
2019. 1

[3] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the CI-
FAR datasets.CoRR, abs/1707.08819, 2017. 3, 5

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. InCVPR, 2009. 1, 6, 9, 10

[5] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. InICLR,
2020. 1, 2, 3, 5, 10, 11

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
recti�ers: Surpassing human-level performance on imagenet
classi�cation. InICCV, 2015. 1

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. InCVPR, 2016. 1

[8] Sian-Yao Huang and Wei-Ta Chu. Searching by generating:
Flexible and ef�cient one-shot NAS with architecture gener-
ator. InCVPR, 2021. 2, 10, 11, 13

[9] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and
E. P. Xing. Neural architecture search with bayesian optimi-
sation and optimal transport. InNIPS, 2018. 1

[10] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. InICLR, 2014. 1

[11] N. Klyuchnikov, I. Tro�mov, E. Artemova, M. Salnikov, M.
Fedorov, and E. Burnaev. Nas-bench-nlp: Neural archi-
tecture search benchmark for natural language processing.
CoRR, abs/2006.07116, 2020. 1, 6, 7

[12] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 3, 5, 8, 9

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classi�cation with deep convolutional neural networks. In
NeurIPS, 2012. 1

[14] C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu, Y.
Wang, C. Hao, and Y. Lin. Hw-nas-bench: Hardware-aware
neural architecture search benchmark. InICLR, 2021. 1, 2,
3, 5, 10, 12

[15] L. Li and A. Talwalkar. Random search and reproducibility
for neural architecture search. InUAI, 2019. 3, 8, 9, 11, 12

[16] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. 2019. 1, 6, 8, 9, 10

[17] J. Lukasik, D. Friede, A. Zela, F. Hutter, and M. Keuper.
Smooth variational graph embeddings for ef�cient neural ar-
chitecture search. InIJCNN, 2021. 1, 2, 13, 14

[18] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized evolution for image classi�er architecture
search. InAAAI, 2019. 1, 3, 8, 9, 11

[19] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J.
Tan, Q. V. Le, and A. Kurakin. Large-scale evolution of im-
age classi�ers. InICML, 2017. 1

[20] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Os-
borne. Interpretable neural architecture search via bayesian
optimisation with weisfeiler-lehman kernels. 2021. 1

[21] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sun-
daram, Md. M. A. Patwary, Prabhat, and R. P. Adams. Scal-
able bayesian optimization using deep neural networks. In
ICML, 2015. 3, 9, 11, 12

[22] C. Szegedy, Wei L., Yangqing J., P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Go-
ing deeper with convolutions. InCVPR, 2015. 1

[23] A. Tripp, E. Daxberger, and J. Hernández-Lobato. Sample-
ef�cient optimization in the latent space of deep generative
models via weighted retraining. InNeurIPS, 2020. 1, 2

[24] Colin White, Willie Neiswanger, and Yash Savani. Bananas:
Bayesian optimization with neural architectures for neural
architecture search. InAAAI, 2021. 1, 3, 8, 9, 11

[25] C. White, S. Nolen, and Y. Savani. Exploring the loss land-
scape in neural architecture search. 2021. 1, 3, 8, 9, 10, 11,
12, 13

[26] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang. Does
unsupervised architecture representation learning help neural
architecture search? InNeurIPS, 2020. 2, 3, 5, 8, 10, 11, 13

[27] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and
F. Hutter. Nas-bench-101: Towards reproducible neural ar-
chitecture search. InICML, 2019. 1, 2, 10, 11

[28] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen. D-
vae: A variational autoencoder for directed acyclic graphs.
In NeurIPS, 2019. 1

[29] B. Zoph, V. Vasudevan, J. Shlens, and Q. V Le. Learning
transferable architectures for scalable image recognition. In
CVPR, 2018. 1, 9

Appendices

Section A provides an overview about the overall imple-
mentation details, by �rst introducing graph representations
for each search space, which we consider in the main paper,
second detailed information about the surrogate prediction
model and last the search algorithm. Appendix B shows
results on additional surrogate benchmarks as well as re-
sults on the DARTS search space in the mobile setting. In
Appendix C, we provide more details about the experimen-
tal results from the main paper. In Appendix D we show
additional ablation studies. In Appendix E we describe de-
tails about the generator network, and in Appendix F we list
all hyperparameter settings of our experiments. Lastly, we
include a visual intuition of the latent space optimization
technique in Appendix G.

A. Implementation Details

A.1. Search Space Representations

In this section we provide more details about the search
spaces, we consider in the main paper.

A.1.1 NAS-Bench-101

Figure 3. Exemplary cell representation from the NAS-Bench-101
search space. (left) DAG representation of a graph with 7 nodes.
(right) The top part shows the node attribute matrix to the DAG
and the bottom part shows its adjacency matrix.

NAS-Bench-101 is the �rst tabular benchmark designed
for benchmarking NAS methods. This search space is a
cell-based search space and contains423; 624unique neural
networks. Each architecture is trained3 times on CIFAR-
10 [12] for image classi�cation. The cell topology is lim-
ited to number of nodesjV j � 7 (including input and output
node) and edgesjE j � 9. The nodes represent the architec-
ture layers and intermediate nodes can take any operation
from the operation setO = f 1 � 1 conv.; 3 � 3 conv.; 3 �
3 max poolingg. For visualization purposes, we present
in Figure 3 exemplary a DAG from the NAS-Bench-101
search space, with its corresponding node attribute matrix
and its adjacency matrix. Note, a concatenation of the �at-
ted node attribute matrix and the �atted upper triangular ad-

Figure 4. Exemplary cell representation from the NAS-Bench-201
search space. (top) The left part visualizes the DAG representa-
tion with node attributes instead of edge attributes. The right part
shows the true DAG representation in the NAS-Bench-201 search
space. (bottom) The left part shows the node attribute matrix to
the DAG and the right part shows its adjacency matrix.

jacency matrix is the representation our generator model is
trained to learn; this holds for all search spaces.

A.1.2 NAS-Bench-201

NAS-Bench-201 [5] is another cell-structured search space,
which consists of15; 625architectures. Each architecture is
trained for200training epochs on CIFAR-10 [12], CIFAR-
100 [12], and ImageNet16-120 [3]. This benchmark pro-
vides validation and test accuracy information for each of
the three datasets. The cell structure is different com-
pared to NAS-Bench-101: Each cell hasjV j = 4 nodes
and jE j = 6 edges, where the former represent feature
maps and the latter denote operations chosen from the set
O = f 1� 1 conv.; 3� 3 conv.; 3� 3 avg pooling; skip; zerog.

Figure 4 visualizes a DAG in the true variant in the NAS-
Bench-201 search space with edge attributes, as well as
our adapted representation, where the edge attributes are
changed to node attributes. This is similar to the representa-
tion in [26]. We show experiments on NAS-Bench-101 and
NAS-Bench-201 in subsection 3.1.

A.1.3 Hardware-Aware-NAS-Bench

The recently introduced HW-NAS-Bench [14] is the �rst
public dataset for hardware NAS. It extends two represen-
tative NAS search spaces, NAS-Bench-201 [5] and FBNet
[51], by providing measured and estimated hardware costs
(i.e. latency and/or energy) for each device for all archi-
tectures in both search spaces. For this, HW-NAS-Bench
considers six hardware devices:Edge GPU[32], Raspi 4
[33], Edge TPU[30], Pixel 3 [31], ASIC-Eyeriss[38] and
FPGA[34,35].

Figure 5. (Top) Our search method generates architectures from
points in an architecture representation space that is iteratively op-
timized. (bottom) The architecture representation space is biased
towards better-performing architectures with each search itera-
tion. After only48evaluated architectures, our generator produces
state-of-the-art performing architectures on NAS-Bench-101.

In our experiments in subsection 3.2 we consider the la-
tency information on the NAS-Bench-201 search space.

A.2. Surrogate Model

In this section, we present details about the surrogate
models used in the main paper. The MLP surrogate model
used for our AG-Net is a 4-layer MLP with ReLU non-
activation functions. The hidden size equals the input size.
The input to the MLP surrogate model is the vector repre-
sentation2 Rn of our graphs: a concatenation of the �atted
node attribute matrix and �atted upper triangular matrix of
the adjacency matrix, which presents the edge scores. Note,
the vector dimensionn differs across the search spaces due
to the different maximal amount of nodes. Our AG-Net
passes the output of our generator, i.e. a generated vec-
tor representation, as the direct input to our MLP surrogate
model.

A.3. Search Algorithm

Figure 5 visualizes the search process of our method,
which is effective and sample-ef�cient. It reinforces the
generator network to produce architectures with improving
validation accuracy. High-level descriptions of the uncon-
strained (subsection 3.1) and constrained (subsection 3.2)
versions of our search algorithm are depicted in algorithm 1
and algorithm 2 respectively.

B. Additional Studies

In the main paper we evaluate our proposed simple archi-
tecture generative network (AG-Net) on two tabular bench-

Algorithm 1: Unconstrained Search Algorithm
Input: (i) Search spacepD

Input: (ii) Pretrained generatorG
Input: (iii) Untrained performance predictorP
Input: (iv) Query budgetb
Input: (v) e epochs to trainG andP
. Initialize training data

1 D fg
2 while jD j < 16do
3 D D [f d � pD g
4 end

. Evaluate architectures (get
accurracies on target image
dataset)

5 D eval(D)
. Randomly initialize predictor

weights
6 P init(P)

. Search loop
7 while jD j < b do

. Weight training data by
performance

8 D w weight(D)
. Train generator and predictor

9 train(G; P, D w, e)
. Generate 100 candidates

10 D cand fg
11 while jD candj < 100do
12 z � U [� 3; 3]
13 D cand D cand[G(z)
14 end

. Select top 16 candidates with
P

15 D cand select(D cand; P;16)
. Evaluate and add to data

16 D D [eval(D cand)
17 end

marks. Here, we additionally evaluate AG-Net on the sur-
rogate benchmarks NAS-Bench-NLP [11] and NAS-Bench-
301 [50] evaluated on the DARTS search space [16]. Addi-
tionally we perform experiments on the ImageNet [4] clas-
si�cation task and show state-of-the-art performance on the
DARTS search space.

B.1. Experiments on Surrogate Benchmarks

We furthermore apply our search method on larger
search spaces as NAS-Bench-NLP [11] and DARTS [16]
without ground truth evaluations for the whole search space,
making use of surrogate benchmarks as, NAS-Bench-X11
[55], NAS-Bench-Suite [45] and NAS-Bench-301 [50].

Algorithm 2: Constrained Search Algorithm
Input: (i) Search spacepD

Input: (ii) Pretrained generatorG
Input: (iii) Untrained performance predictorPa

Input: (iv) Set of constraint predictorsPc

Input: (v) Query budgetb
Input: (vi) e epochs to trainG andP
Input: (vii) Set of constraintsC
. Initialize training data

1 D fg
2 while jD j < 16do
3 D D [f d � pD g
4 end

. Evaluate architectures (get
accurracies and constraints on
target image dataset)

5 D eval(D)
. Randomly initialize predictor

weights
6 Pa init(Pa)
7 foreachP 2 Pc do
8 P init(P)
9 end

. Search loop
10 while jD j < b do

. Weight train data by
performance and constraints

11 D w weight(D ; C)
. Train generator and predictors

12 train(G; Pa ; Pc, D w, e)
. Generate 100 candidates

13 D cand fg
14 while jD candj < 100do
15 z � U [� 3; 3]
16 D cand D cand[G(z)
17 end

. Select top16 candidates with
Pa and Pc

18 D cand select(D cand; Pa ; Pc;16)
. Evaluate and add to data

19 D D [eval(D cand)
20 end

B.2. NASBenchNLP

Here, we report experiments on NAS-Bench-NLP [11]
for the language modeling task on Penn TreeBank [46]. We
�rst introduce the search space representation and second
display the experimental results.

Search Space Representation NAS-Bench-NLP [11] is
the �rst RNN-derived benchmark for language model-

Figure 6. Exemplary cell representation from the NAS-Bench-
NLP search space. (left) DAG representation of a graph with 12
nodes. (right) The top part shows the node attribute matrix to the
DAG and the bottom part shows its adjacency matrix.

ing tasks. From the total1053 possible architectures
in the complete search space,14; 322 architectures are
trained on Penn TreeBank [46] (PTB) and provided in
this benchmark. The cell search space is constrained
by the number of nodesjV j � 24, the number of
hidden statesjH j � 3 and the number of linear in-
put vectors � 3. The nodes represent the architec-
ture operational layer and are chosen from the setO =
f linear; element wise blending; element wise product;
element wise sum; Tanh activation; Sigmoid activation;
LeakyReLU activationg.

For the experiments on NAS-Bench-NLP [11] we make
use of the surrogate benchmark NAS-Bench-X11 [55] and
the additional implementation in NAS-Bench-Suite [45].
Note, for the NAS-Bench-X11 evaluations, each archi-
tecture from the NAS-Bench-NLP search space must be
trained for three epochs to use the surrogate model, whereas
NAS-Bench-Suite provides the surrogate model for NAS-
Bench-NLP without learning curve information, but also
accompanying a lower Kendall Tau rank correlation. For
fast evaluations we use the latter surrogate for our experi-
ments. In order to use the surrogate benchmark, the archi-
tecture representation is the same used in [55] with the mod-
i�cation, that each hidden node is connected to the output
node. An exemplary architecture representation is visual-
ized in Figure 6. A next step is to analyse the14; 332pro-
vided architectures on uniqueness, which leads to12; 107
unique architectures. Furthermore, since [55] and [45] only
provide a surrogate model, which only considers architec-
tures with up to 12 nodes, we also restrict our training data
to this subset leading to a total of7; 258architectures.

Experimental Results We retrain AG-Net coupled with
the surrogate model for 30 epochs to predict the valida-
tion perplexity. As already mentioned, the search space

NAS Method Val. Perplexity (%) StD (%) Queries

BANANAS† [24] 95:68 0:16 304
Local Search† [25] 95:69 0:18 304

Random Search† [15] 95:64 0:19 304
Regularized Evolution† [18] 95:66 0:21 304

AG-Net (ours) 95:86 0:18 304

Table 1. Results on NAS-Bench-NLP (mean and standard devia-
tion over 100 trials) for the search of the best architecture in terms
of validation perplexity compared to state-of-the-art methods.

Figure 7. Exemplary cell representation from the DARTS search
space. (top) Visualization of the DAG representation in the
DARTS search space. (bottom) The left part shows the node at-
tribute matrix to the DAG and the right part shows its adjacency
matrix.

considered in NAS-Bench-NLP is too large for a full tab-
ular benchmark evaluation, thus we make use of the sur-
rogate benchmark NAS-Bench-X11 [55] and NAS-Bench-
Suite [45] instead of tabular entries.

For fair comparison we compare our method to the same
state-of-the-art-methods as considered in the main paper.
The results are reported in Table 1. Our AG-Net improves
over all state-of-the-art-methods by a substantial margin.

B.3. NASBench301

Next, we evaluate AG-Net on the cell-based DARTS [16]
search space using the surrogate benchmark NAS-Bench-
301 [50] for the CIFAR-10 [12] image classi�cation task.
We �rst introduce the search space representation, second
the search process in this cell-based search space, which
needed to be adapted and last we display the experimental
results.

Search Space Representation NAS-Bench-301 [50] is
the �rst surrogate benchmark, which evaluates several sur-
rogate models on in total60; 000 sampled architectures
from the DARTS [16] search sapce on the CIFAR-10 [12]
image classi�cation task. The DARTS search space con-

sists of 1018 neural networks, where each network con-
sists of two cells; a normal cell and a reduction cell. Each
cell is limited by the number of nodesjN j = 7 and the
number of edgesjE j = 12, where4 of these edges con-
nect the intermediate nodes (excluding the input nodes) to
the output node. Each edge denotes an operation from
the setO = f 3 � 3 sep. conv.; 5 � 5 sep. conv.; 3 �
3 dil. conv.; 5 � 5 dil. conv.; 3 � 3 avg pooling; 3 �
3 max pooling; identity; zerog. Each intermediate edge is
connected to two predecessor nodes. Each cell also con-
tains two input nodes, which are the output nodes from the
previous two cells. The overall network is created by stack-
ing the normal and reduction cell.

In order to train our generative model to generate valid
cells, we additionally randomly sample500k architectures
from the DARTS search space. We train our generative
model to learn to generate valid cells independently of be-
ing a normal or reduction cell. In Figure 7 we visualize
the adapted node attribute matrix and the adapted adja-
cency matrix to an exemplary DAG in the DARTS search
space [16]. This is similar to the representation in [26].

Search Process using NAS-Bench-301In order to ap-
ply our AG-Net on the DARTS search space, we have to
adapt the exact search procedure using the cells individu-
ally, which we describe in the following. For experiments in
the DARTS [16] search space, we �rst train our generative
model on generating valid cells, as visualized in Figure 7;
here we do not distinguish between generating a normal or
a reduction cell. Having a pretrained generative model for
generating valid cells representations in the DARTS search
space allows for searching well-performing architectures.
Next, we describe the search process for architectures eval-
uated on CIFAR-10 using the surrogate benchmark NAS-
Bench-301 [50]. Since the DARTS search space is de�ned
by a normal and reduction cell, we have to adapt the search
process, compared to the search in the tabular benchmark
search spaces, where the architectures differ only between
the DAGs. We begin the search by randomly sampling16
architectures from NAS-Bench-301. Next, we generate one
normal cell. This cell is used to search for the best reduc-
tion cell in terms of the accuracy given by the surrogate
benchmark NAS-Bench-301, in combination with the ran-
domly sampled cell. This search procedure follows then
the same steps as for the tabular benchmarks and stops af-
ter we reach a query amount of 155. Now, we use the best
found reduction cell as a �xed starting point to search for the
best normal cell in the same manner as before. The overall
search stops after a maximal amount of 310 queries. The
search outcome differs between starting with a reduction or
the normal cell. The search procedure starting with a ran-
dom reduction cell is analogous. In the following, we report
the search outcome for NAS-Bench-301 [50] starting with

a random reduction cell.

Experimental Results The results are described in Ta-
ble 2. Our method is comparable to other state-of-the-art
methods in this search space.

NAS Method Val. Acc (%) StD (%) Queries

BANANAS† [24] 94:77 0:10 192
Bayesian Optimization† [21] 94:71 0:10 192

Local Search† [25] 95.02 0:10 192
Random Search† [15] 94:31 0:12 192

Regularized Evolution† [18] 94:75 0:11 192

AG-Net (ours) 94:79 0:12 192

Table 2. Results on NAS-Bench-301 (mean and standard deviation
over 50 trials) for the search of the best architecture in terms of
validation accuracy compared to state-of-the-art methods.

B.3.1 ImageNet Experiments

The previous experiment on NAS-Bench-301 [50] shows
the ability of our generator to generate valid architectures
and to perform well in the DARTS [16] search space. This
allows for searching a well-performing architecture on Im-
ageNet [4]. Yet evaluating up to 300 different found ar-
chitectures on ImageNet is extremly expensive. Our �rst
approach is to retrain the best found architectures on the
CIFAR-10 [12] image classi�cation task from the previous
experiment on NAS-Bench-301 on ImageNet [4]. Our sec-
ond approach is based on a training-free neural architetures
search approach. The recently proposed TE-NAS [36] pro-
vides a training-free neural architecture search approach, by
ranking architectures by analysing the neural tangent kernel
(NTK) and the number of linear regions (NLR) of each ar-
chitecture. These two measurements are training free and
do not need any labels. The intuition between those two
measurements is their implication towards trainability and
expressivity of a neural architecture and also their correla-
tion with the neural architecture's accuracy; NTK is nega-
tively correlated and NLR positively correlated with the ar-
chitecture's test accuracy. We adapt this idea for our search
on ImageNet and search architectures in terms of their NTK
value and their number of linear regions instead of their val-
idation accuracy. We describe the detailed search process
using TENAS in the next section.

Table 3 shows the results. Note that our latter described
search method on ImageNet istraining-free (as TE-NAS
[36]) and the amount of queries displays the amount of data
we evaluated for the zero cost measurements. Other query
information include the amount of (partly) trained archi-
tectures. Furthermore, the displayed differentiable meth-
ods are based on training supernets which can lead to ex-
pensive training times. The best found architectures on

NAS Method Top-1_ Top-5_ # Queries
Search

GPU days

Mixed Methods

NASNET-A (CIFAR-10) [29] 26:0 8:4 20000 2000
PNAS (CIFAR-10) [43] 25:8 8:1 1160 225
NAO (CIFAR-10) [44] 24:5 7:8 1000 200

Differentiable Methods

DARTS (CIFAR-10) [16] 26:7 8:7 - 4.0
SNAS (CIFAR-10) [53] 27:3 9:2 - 1.5

PDARTS (CIFAR-10) [37] 24.4 7.4 - 0.3
PC-DARTS (CIFAR-10) [54] 25:1 7:8 - 0.1
PC-DARTS (ImageNet) [54] 24 :2 7:3 - 3.8

Predictor Based Methods

WeakNAS (ImageNet) [52] 23.5 6.8 800 2.5
AG-Net (NB-301)(CIFAR-10) (ours) 24.3 7.3 304 0.21

Training-Free Methods

TE-NAS (CIFAR-10) [36] 26:2 8:3 - 0.05
TE-NAS (ImageNet) [36] 24:5 7:5 - 0.17

AG-Net (CIFAR-10) (ours) 23.5 7:1 208 0.02
AG-Net (ImageNet) (ours) 23.5 6:9 208 0.09

Table 3. ImageNeterror of neural architecture search on DARTS.

NAS-Bench-301 [50] (CIFAR-10) result in comparable er-
ror rates on ImageNet to former approaches. As a result,
our search method approach is highly ef�cient and outper-
forms previous methods in terms of needed GPU days. The
result in terms of top-1 and top-5 error rates are even im-
proving over the one from previous approaches when using
the training free approach.

Search Process using TENAS As we described in the
previous section, the search in the DARTS [16] search space
needs adaptions in the search procedure. Here we describe
the further adaption of using training free measurements in-
stead of the NAS-Bench-301 prediction. The training free
measurements are based on the recent paper TE-NAS [36],
which ranks architectures by analysing the neural tangent
kernel, by its condition number (KN), and the number of
linear regions (NLR) of each architecture. Concretely, for
the search on ImageNet [4] we search for architectures in
terms of their KN value and their number of linear regions
instead of their validation accuracy. In the beginning of our
search we generate three random normal cells. These cells
are used to search for an optimal reduction cell optimizing
both measurements KN and NLR. In each search iteration
we generate reduction cells and calculate the KN and NLR
for each combination of normal cell and reduction cell. The
reduction cells are ranked according to their mean KN and
their mean NLR (mean in terms of all three normal cells).
The 16 best ranked reduction cells are then used for the next
iteration of reduction cell search. The reduction cell search
stops, when a maximum of 104 queries is reached. After
that we use the best found reduction cell in terms of the
lowest KN and the highest NLR for the next search for nor-

mal cell. The next steps use this best found reduction cell
as a starting point and searches for the best normal cell in
the same manner es before. The search stops after a total of
208 queries and outputs an overall normal and reduction cell
combination, leading to a DARTS [16] architecture, which
we train on ImageNet [4] using the same training pipeline
as [36].

C. Experimental Details

C.1. NASBench101

Here we include tabular results of our NAS-Bench-101
experiments from the main paper in Table 4. We report the
mean and standard deviation over 10 runs.

C.2. NASBench201

We report tabular search results of our NAS-Bench-201
experiments from the main paper for different numbers of
queries in Table 5. In this section, we also compare AG-Net
to two recent generative models [8, 49]. SGNAS [8] trains
a supernet by uniform sampling, following SETN [39]. Ad-
ditionally a CNN based architecture generator is trained to
search architectures on the supernet. When comparing with
[26], we also adopt their evaluation scheme of adding only
the best-performing architecture (top-1) to the training data
instead of top-16 as in our other experiments. The results
show, ,most importantly, that AG-Net shows strong perfor-
mance in the few-query regime comparing to [26] with the
exception of CIFAR-100, proving its high query ef�ciency.

C.3. Experiments on HardwareAware Benchmark

In comparison to the experiments for NAS-Bench-101
[27] and NAS-Bench-201 [5] image benchmarks, the search
on the Hardware-Aware NAS-Bench [14] changes to be a
multi objective learning procedure. We compare two dif-
ferent objective settings: i) a joint constrained optimization
in Equation 4 and ii) a constrained optimization in Equa-
tion 5. For both settings we need to adapt the surrogate
model by including an additional predictorg(�) for latency.
We implementg(�) equally to the performance predictor
f (�), whereas both predictors share weights in our exper-
iments. We give a detailed overview of the hyperparameter
settings in Appendix F. Since we include an additional pre-
dictor, the training objective needs to be updated, as seen
in Equation 6 with multiple targets. The risk of including
multiple targets to the training objective is an exploding loss
leading to reduced valid generation ability of our generative
network. In order to overcome this problem, we scale each
loss term by the largest one, such that each term is at most
1. This way, we have a more stable training.

Table 6 shows the tabular results on different hardware
and latency constraints.

Exemplary Searches for Other Devices In Figure 2
we showed an exemplary search result comparing random
search with both of our constrained algorithm settings in
the case of different latency constraints on a Pixel3. In the
following, we show more examples on different devices in
Figure 8. These plots show that both methodsJoint=1 and
Joint=0outperform the random search baseline in all differ-
ent device experiments. The same results as in the main pa-
per holds therefore for all other devices too;Joint=1 is able
to �nd better performing architectures compared toJoint=0
if the latency constraintL restricts the feasible search space
strongly.

Figure 8. Exemplary searches on HW-NAS-Bench for image clas-
si�cation on ImageNet16 with192queries on Edge GPU, Raspi4,
Eyeriss, FPGA and latency conditionsL 2 f 2; 4; 6; 8; 10g, L 2
f 2; 4; 6; 8; 10; 12; 14g andL 2 f 1; 2g (y-axis zoomed for visibil-
ity).

Figure 9. (left) Optimality for all search parameters in Table 6
at any time during the search progress in terms of the number of
evaluated architectures (up to320). Optimality is the mean vali-
dation accuracy of10 runs per algorithm, normalized by the opti-
mal value for each parameter setting (hence, optimum is at1:0).
(right) zoomed y-axis

Search Progress and BaselinesLocal search [25] is con-
sidered a strong baseline in NAS. In the case of constrained
searches (as in HW-NAS-Bench), we noticed that it cannot
perform well without adaptation. The vanilla local search
algorithm expects as input a single randomly drawn archi-
tecture from the search space. However, this architecture is

NAS Method Val. Acc (%) StD (%) Test Acc(%) StD (%)Queries

Optimum* 95:06 - 94:32 -

Arch2vec + RL [26] - - 94:10 - 400
Arch2vec + BO [26] - - 94:05 - 400

NAO ‡ [44] 94:66 0:14 93:49 0:59 192
BANANAS† [24] 94:73 0:17 94:09 0:19 192

Bayesian Optimization† [21] 94:57 0:2 93:96 0:21 192
Local Search† [25] 94:57 0:15 93:97 0:13 192

Random Search† [15] 94:31 0:15 93:61 0:27 192
Regularized Evolution* [18] 94:47 0:11 93:89 0:2 192

WeakNAS [52] - - 94.18 0:14 200

AG-Net (ours) 94.90 0:22 94.18 0:10 192

Table 4. Architecture search on NAS-Bench-101. Reported is the mean and the standard deviation over 10 trials for the search of the best
architecture in terms of validation accuracy on the CIFAR-10 image classi�cation task compared to state-of-the-art methods.

NAS Method CIFAR-10 CIFAR-100 ImageNet16-120 Queries
Val. Acc StD Test Acc StD Val. Acc StD Test Acc StD Val. Acc StD Test Acc StD

Optimum* 91:61 94:37 73:49 73:51 46:73 47:31

SGNAS [8] 90:18 0:31 93:53 0:12 70:28 1:2 70:31 1:09 44:65 2:32 44:98 2:10

Arch2vec + BO [26] 91:41 0:22 94:18 0:24 73.35 0:32 73.37 0:30 46:34 0:18 46:27 0:37 100
AG-Net (ours) 91.55 0:08 94.24 0:19 73:2 0:34 73:12 0:40 46:31 0:33 46:2 0:47 96

AG-Net (ours with topk=1) 91:41 0:30 94:16 0:31 73:14 0:56 73:15 0:54 46.42 0:14 46.43 0:30 100

BANANAS† [24] 91:56 0:14 94:3 0:22 73.49* 0:00 73:50 0:00 46.65 0:13 46.51 0:11 192
BO† [21] 91:54 0:06 94:22 0:18 73:26 0:19 73:22 0:27 46:43 0:35 46:40 0:35 192
RS† [15] 91:12 0:26 93:89 0:27 72:08 0:53 72:07 0:61 45:87 0:39 45:98 0:41 192

AG-Net (ours) 91.60 0:02 94.37* 0:00 73.49* 0:00 73.51* 0:00 46:64 0:12 46:43 0:34 192

GANAS [49] - - 94:34 0:05 - - 73:28 0:17 - - 46.80 0:29 444
AG-Net (ours) 91.61* 0:00 94.37* 0:00 73.49* 0:00 73.51* 0:00 46.73* 0:00 46:42 0:00 400

Table 5. Architecture Search on NAS-Bench-201. We report the mean and standard deviation over 10 trials for the search of the architecture
with the highest validation accuracy. For comparable numbers of queries, AG-Net performs similarly or better than then previous state of
the art.

not guaranteed to be feasible in this setting, as its latency
can be larger than the latency constraint. To circumvent
this, we performed local search in the following settings:
(a) local search vanilla setting with one randomly drawn ar-
chitecture, and (b) local search initialized with16randomly
drawn architectures. In each setting, local search contin-
ues to search the neighborhood of the next best architec-
ture in terms of accuracy that satis�es the latency constraint.
We noticed that initializing local search with16 randomly
drawn architectures improves its performance substantially,
however, it is still not on par with random search [15] in this
constrained search space. Consequently, we only show ran-
dom search as baseline in Table 6 to improve readability. In
Figure 9 we show the progress of our algorithms (Joint=0
andJoint=1) compared to random search and local search
in settings (a) and (b).

D. Ablation Studies

In this section we give an overview of different ablation
studies with respect to the proposed AG-Net.

D.1. Backpropagation and LSO Ablation Studies

In this section we analyse the impact of the LSO tech-
nique and the backpropagation ability to the search ef�-
ciency. Therefore, we compare our AG-Net with the latter
named adaptions on the tabular benchmarks NAS-Bench-
101 [27] and NAS-Bench-201 [5]. The results of our ab-
lation study are reported in Table 7. As we can see, the
lack of weighted retraining decreases the search substan-
tially. In addition the results without backpropagation sup-
port that the coupling of the predictor's target and the gen-
eration process enables a more ef�cient architecture search
over different search spaces. Thus, the combination of LSO
and a fully differentiable approach improves the effective-
ness of the search.

D.2. Latent Space Ablations

As we have seen in subsection 3.1, AG-Net improves
over state-of-the art methods. For additional comparisons,
we investigate different search methods in the latent space
of the generative model, with samplesz from a grid and
also include baselines using the LSO approach. For the �rst

Settings Best out of 10 runs Mean
Constraint Joint=0 Joint=1 Random Joint=0 Joint=1 Random Optimum*

Device Lat._ Acc.̂ Lat._ Acc.̂ Lat._ Acc.̂ Lat._ Acc.̂ Feas.̂ Acc.̂ Feas.̂ Acc.̂ Feas.̂ Acc.̂ Lat._

Edge GPU 2 40.6* 1:90 40.6* 1:90 39:7 1:78 39.7 0:29 39.1 0:31 37:2 0:05 40:6 1:90
Edge GPU 4 44.8* 3:49 44.8* 3:49 43:7 3:35 42.8 0:29 43.3 0:43 41:7 0:22 44:8 3:49
Edge GPU 6 45.8 5:29 46.4* 5:96 45.8 5:29 45.3 0:64 45.0 0:79 44:9 0:72 46:4 5:96
Edge GPU 8 46.5 6:81 46.8* 6:81 46:4 7:44 46.3 0:98 46.2 0:99 45:7 1:00 46:8 6:81

Raspi 4 2 35.5* 1:58 35.5* 1:58 34:8 1:60 34.6 0:28 34.7 0:30 33:9 0:08 35:5 1:58
Raspi 4 4 43.1 3:83 436.* 3:79 42:7 3:85 42.0 0:47 42.8 0:50 41:9 0:37 43:6 3:79
Raspi 4 6 44.9 5:95 45.2* 5:29 44:5 5:95 44.0 0:56 44.1 0:57 43:2 0:55 45:2 5:29
Raspi 4 8 45.6 6:33 45:5 7:96 45.7 7:97 45.1 0:69 44.9 0:79 44:7 0:76 46:5 7:43
Raspi 4 10 46.6 8:66 46.5 8:62 46:4 8:72 46.4 0:77 45.4 0:94 45.4 0:90 46:8 8:83
Raspi 4 12 46.8* 8:83 46:3 9:05 46.4 8:72 46.5 0:91 45.7 0:98 45:6 0:96 46:8 8:83

Edge TPU 1 46.8* 0:96 46.6 0:97 46:4 1:00 46.4 0:74 45.7 0:82 45:4 0:79 46:8 0:96

Pixel 3 2 41.3* 1:30 41.3* 1:30 40:0 1:50 40.9 0:48 40.5 0:59 38:8 0:30 41:3 1:30
Pixel 3 4 46.0* 3:55 44:6 3:01 44.7 3:23 45.3 0:69 44.1 0:77 43:8 0:64 46:0 3:55
Pixel 3 6 46.4 5:92 46.5* 5:95 45:8 4:68 45.7 0:77 45.2 0:94 45:1 0:88 46:5 5:57
Pixel 3 8 46.8* 6:65 46.5 7:88 46:1 7:13 46.4 0:87 45.7 0:99 45:4 0:97 46:8 6:65
Pixel 3 10 46.6 6:70 46:1 8:48 46.4 8:01 46.4 0:96 45:5 1:00 45.6 0:99 46:8 6:65

Eyeriss 1 45.2* 0:98 44.9 0:98 44:7 0:98 44.5 0:49 43.6 0:53 43:3 0:23 45:2 0:98
Eyeriss 2 46.5 1:65 46.5 1:65 46:4 1:65 46.3 0:87 45.7 0:99 45.7 0:95 46:8 1:65

FPGA 1 44.0 1:00 44.0 0:97 43:8 0:97 43.3 0:65 43.3 0:80 42:9 0:58 44:4 1:00
FPGA 2 46.5* 1:60 46:0 1:60 46.3 1:97 46.2 0:82 45:1 0:99 45.3 0:97 46:5 1:60

Table 6. Results for searches with at most200queries on HW-NAS-Bench [14] with varying devices and latency (Lat.) constraints in two
multi objective settings:Joint=0 optimizes accuracy under latency constraint, whileJoint=1 optimizes for accuracy and latency jointly.
We report the best found architecture (in%) out of10 runs with their corresponding latency, as well as the mean of these runs. We compare
to random search as a strong baseline [15]. Feasibility (Feas.) is the proportion of evaluated architectures during the search that satisfy
the latency constraint (larger is better). The optimal architecture (*) is the architecture with the highest accuracy satisfying the latency
constraint.

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 95:06 94:32 91:61 94:37 73:49 73:51 46:77 47:31

AG-Net (ours) w/o LSO 94:38 93:78 91:15 93:84 71:72 71:83 45:33 45:04
AG-Net (ours) w/o backprop 94:71 94:12 91.60 94:30 73:38 73:22 46:62 46:13

AG-Net (ours) 94.90 94.18 91.60 94.37* 73.49* 73.51* 46.64 46.43

Table 7. Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 using AG-Net (mean over 10 trials with a maximal query
amount of192).

experiment we use the generator solely as a data sampler
from the generator's latent space without any retraining, for
the latter baseline we retrain the generator during the search.
For the optimization, we use Bayesian optimization, local
search and random search.

Bayesian Optimization We use DNGO [21] as our un-
certainty prediction model for the Bayesian optimization
search strategy, with the basis regression network being a
one-layer MLP with a hidden dimensionality of 128, which
is trained for 100 epochs and expected improvement (EI)
[47] as our acquisition function, which is mostly used in
NAS. We set the best function value for the EI evaluation as

the best validation accuracy of the training data. We sample
16 initial random latent space variablesz � U [� 3; 3] and
decode them to graph data using our pretrained generative
model. These latent space variables and their corresponding
validation architecture performances are then the inputs for
the DNGO model for training. Again, the best 16 architec-
tures are selected using EI in each round to be evaluated and
added to the training data. This search ends when the total
query amount of300is reached.

Random and Local Search In addition to Bayesian Opti-
mization as a comparison, we also include a random search
[15] and local search investigation. Recently, [25] show

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 95:06 94:32 91:61 94:37 73:49 73:51 46:77 47:31

Random Search 94:27 93:65 91:37 93:92 72:55 72:49 46:09 46:05
Local Search 94:31 93:66 91:28 94:01 72:52 72:59 45:89 46:07

Bayesian Optimization 94:27 93:62 91:30 93:99 72:23 72:35 46:09 46:01
Random Search + LSO 94:64 94.20 91.61* 94.37* 73.49* 73.51* 46.77* 45:47
Local Search + LSO 94:17 93:50 91:30 93:96 72:43 72:58 45:83 45:95

Bayesian Optimization +LSO 94:50 93:96 91:43 94:17 72:64 72:67 46:30 45:91
SGNAS [8] + LSO - - 91.61* 94.37* 73:04 73:12 46:56 46.32

AG-Net (ours) 94.96 94.20 91.61* 94.37* 73.49* 73.51* 46:67 46:22

Table 8. Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 on the AG-Net latent space (mean over 10 trials with a maximal
query amount of300).

Figure 10. Ablation: neural architecture search on NAS-Bench-101 and NAS-Bench-201 over 10 trials.

that local search is a powerful NAS baseline, resulting in
competitive results. Local search [25] evaluates samples
and their neighborhood uniformly at random. An option to
de�ne the neighborhood is the set of architectures which
differ from a sampled architecture by one node or edge.
This can be done only in the discrete search space, given
for example by the tabular NAS-Benchmarks. We have
to adapt the neighborhood de�nition in our latent space
for local search in this space. We sample a latent space
variable z � U [� 3; 3], decode it and evaluate the gen-
erated neural architecture. Here, we de�ne neighborhood
as the Euclidean space around the sampled latent variable
U� (z) = f y � U [� 3; 3]jd(z; y) < � g, with � being suf�-
ciently small. This neighborhood is then investigated until
a local optimum in terms of validation accuracy is reached.
Furthermore, we include a random search and local search
comparison using weighted retraining. Here, we retrain the
generative model in each search iteration for1 epoch with
the weighted objective function, ceteris paribus.

To compare with weight-sharing approaches, we also
compare to the supernet from [8] for the NAS-Bench-201
search space. To compare our AG-Net with SGNAS, we
use the supernet as our surrogate model to predict the archi-
tectures performance while retraining the generative model
in the weighted manner. The results of our ablation stud-
ies are reported in Table 8. AG-Net improves over search
methods on the latent space with and without LSO on both

benchmarks, demonstrating that our generator in combina-
tion with our MLP surrogate model learns to adapt the dis-
tribution shift constructed by the weighted retraining best.

For further visualizations we also plot different abla-
tion search methods over different query number in Fig-
ure 10 for both benchmarks NAS-Bench-101 and NAS-
Bench-201. This �gure demonstrates the high any-time per-
formance of our method on both search spaces. For any
number of available queries, our model is better in �nd-
ing high-performing architectures from the latent space than
other latent space based methods.

E. Generator Details

Figure 11 presents an overview of the training process of
the proposed generative model.

E.1. Generator Evaluation

Based on an investigation of autoencoder abilities from
[26] and [17], we can examine the generation ability of our
generative model. For that we train our generator on90%
of the overall dataset, and thus have a hold-out dataset of
10% for the tabular benchmarks. The generative model
training on the surrogate benchmarks is a priori only on
a subset of the overall dataset. Additionally, we sample
10; 000random variablesz � N (0; 1) and decode them to
graphs. We report the results of this investigation in Table 9.

Figure 11. Representation of the training procedure for our gen-
erator in AG-Net. The input is a randomly sampled latent vector
z 2 Rd . First, the input node is generated, initialized and input
to a GNN to generate a partial graph representation. The learn-
ing process iterative generates node scores and edge scores using
z and the partial graph representation until the output node is gen-
erated. The target for this generated graph is a randomly sampled
architecture.

Search Space Validity (in %) Uniqueness in (%) Novelty in (%)

NAS-Bench-101 71:69 97:92 62:30
NAS-Bench-201 99:97 73:61 10:03
NAS-Bench-301 42:27 100 100
NAS-Bench-NLP 57:95 100 100

Table 9. Generator Abilities. The proposed generator generates ar-
chitectures with high validity and uniqueness scores. The novelty
scores are in a similar range as for previous methods [17].

Here, validity describes the ratio of valid graphs our gener-
ator model generates, uniqueness describes the portion of
unique graphs from the valid generated graphs, and novelty
is the portion of generated graphsnot in the training set. It
is not surprising for the NAS-Bench-301 and NAS-Bench-
NLP search spaces, that our model is able to generate100%
unique and novel graphs, given the large size of both search
spaces. This demonstrates that our simple generator model
is able to generate valid graphs with high novelty and con-
sequently is able to cover a substantial part of the search
space.

E.2. Generator Implementation Details

In this section we present more details about the gener-
ation model SVGe from [17]. The pseudo agorithm is de-
scribed in algorithm 3. The modulesf initNode;
f addNode; f addEdges; f Embeding used in this code are two-layer
MLPs with ReLU activation functions. Note, in contrast to
SVGe, we don't sample within the generation process, in
order to allow for end-to-end learning with the prediction
model for AG-Net.

F. Hyperparameters

In this section we give a detailed overview about the
hyperparameter for our generative network. We use py-

torch [48] and pytorch geometric [40] for all our implemen-
tations.

F.1. Generator

Table 10 presents all used hyperparameters for the gen-
eration training. We train our generator in a ticks manner;
after every5:000 train data, we evaluate our generator for
validity ability. The used pretrained state dict for our search
is then, the one, which the highest validation measurement,
which is de�ned by randomly sample10; 000latent vectors
z 2 R32 and generate architectures. The training is the same
for all different search spaces.

F.2. Surrogate Model

The overall surrogate is an MLP with ReLU activations.
Table 11 and Table 12 list all used hyperparameter used for
the search experiments in the main paper for the simple per-
formance surrogate model and the multi-objective surrogate
model for the additional hardware objective.

G. Latent Space Optimization Visualization

A more descriptive visualization of the latent space opti-
mization technique used for our AG-Net neural architecture
search is displayed in Figure 12.

	. Introduction
	. Architecture Generative Model
	. Experiments
	. Experiments on Tabular Benchmarks
	. Experiments on Hardware-Aware Benchmark

	. Conclusion
	. Implementation Details
	. Search Space Representations
	NAS-Bench-101
	NAS-Bench-201
	Hardware-Aware-NAS-Bench

	. Surrogate Model
	. Search Algorithm

	. Additional Studies
	. Experiments on Surrogate Benchmarks
	. NAS-Bench-NLP
	. NAS-Bench-301
	ImageNet Experiments

	. Experimental Details
	. NAS-Bench-101
	. NAS-Bench-201
	. Experiments on Hardware-Aware Benchmark

	. Ablation Studies
	. Backpropagation and LSO Ablation Studies
	. Latent Space Ablations

	. Generator Details
	. Generator Evaluation
	. Generator Implementation Details

	. Hyperparameters
	. Generator
	. Surrogate Model

	. Latent Space Optimization Visualization

